_f\%@

arge Scale Continuous
ocalisation Design

Considerations and mechanics for enterprise organisations

Gary Lefman y @CiscoL 10N

Chartered Engineer
2020-08-22

m linkedin.com/in/lefman

* Legacy

What you
will learn

e Architecture

* Technology

Presenter
Presentation Notes
Agile localisation legacy fuelled continuous localisation.
How to design continuous localisation into modern software development.
Essential technology and the integration craze.

=== EXPANDED NOTES ===
How the agile localisation legacy fuelled the need for continuous localisation.
Introduce three definitions: continuous integration, continuous delivery, and continuous localisation.
Different types of technology that can be used in the development of a continuous localisation environment.

-alse Hope and the
Need for Speed

P 4 Continuous
| ocalisation

Agile Software

Development 2016

2014 -
A

\
1
1
; Agile Localisation

IEIEN

Presenter
Presentation Notes
Hot term “agile localisation”.
Agile thrived, agile localisation didn’t.
Belief in wrong reasons: faster and cheaper localisation.
By 2014, interest in agile localisation got a little… limp.
Lost interest or pie in the sky idea?
Based on agility, not being agile.
Focus was on end result, not how they got there.
More products move to agile methodologies (Scrum, Kanban, etc.).
Increased pressure to provide more frequent localisation.
New term in 2016: “continuous localisation”.

=== EXPANDED NOTES ===
Until recently, “agile localisation” was the hottest term at Localisation World.
The concept was based on the Agile Manifesto and its successful recognition in the software development industry.
Everyone was talking about it at conference. Interest grew rapidly and there was much talk about “faster and cheaper localisation”.
However, the problem was not “agile” per se, but the fact that it was being conceived on the back of a manifesto.
Over time, interest in agile localisation dropped off and it was no longer being talked about.
Maybe people lost interest, or perhaps they realised that it was a flawed concept.
It was based on the concept of agility, rather than agile practices.
Supporters of agile localisation focused on the potential end result, instead of how they got there.
A variety of agile software development methodologies continued to grow in popularity.
Rapid development of usable products has been putting greater pressure on localisation teams and their vendors.
A new term was heard at LocWorld 31 in Dublin during 2016.
Several other terms were also being thrown around: continuous globalisation and continuous delivery, which are somewhat different in nature.

“A collection of autonomous parts
that form an uninterrupted

process of localisation.”

Continuous Localisation

Presenter
Presentation Notes
The technology is here: just grasp it.
It’s going to need a seismic shift to make it work.
A shift in everyone's mindset and the techniques used.

=== EXPANDED NOTES ===
Continuous localisation may be here for a while because it builds on top of thoroughly used CI/CD processes.
Agile localisation was all talk. No action.
We really can provide truly continuous localisation because the technology is now pervasive.
For continuous localisation to work, there needs to be a seismic shift in the way localised software is developed and released.

Continuous
Delivery

Continuous Continuous

Localisation .
Integration

Presenter
Presentation Notes
CI, CD, and CL work together.
Each has a distinct input and output.
CD output: a build – test or release.
CD input: from source code and other resources.
CI output: localisable code and resources.
CI input: internationalised code.
CL output: testable localised resources.
CL input: externalised resources.

=== EXPANDED NOTES ===
An internationalised product developed using agile software development methodologies will require three distinct continuous concepts.
Continuous integration, continuous delivery, and continuous localisation are related.
The output of continuous delivery is compiled or validated code that is either tested or released.
The input of continuous delivery is the raw source code, images, sound files, documentation, and the localised resources.
The output of continuous integration is source code and resource that are ready to be adapted during localisation.
The input of continuous integration is the code that developers write and commit to source control systems.
The output of continuous localisation is one or more sources that can be integrated into the product during continuous delivery, or be compiled into a language pack.
The input of continuous localisation is externalised resources that need to be localised.

Presenter
Presentation Notes
A high-level view of elements in CI, CD, and CL.

Continuous Delivery
Build
Artefact
Repository

Code Review
Source Control
Continuous
Integration

Test Automation

Localisation

-
©)
=
©
(Vp)]
-
o
_l

Presenter
Presentation Notes
White arrows show flow of information.

=== EXPANDED NOTES ===
This is a very generic view of the elements that are most likely to be involved in continuous integration, continuous delivery, and continuous localisation.
The white arrows show the general flow of information.

Continuous Localisation Continuous Integration Continuous Delivery

Translation Code Review Build

Artefact
Repository

Continuous |
Integration

Server

Localisation Source Control

Integrated
Development Test Automation
Environment

Reporting

Defect
Management

Agile Lifecycle
Management

Presenter
Presentation Notes
Note: some elements are outside of three continuous environments.

=== EXPANDED NOTES ===
Some elements, such as agile lifecycle management and reporting are not part of a continuous environment, but are included for illustration.

Integrated
Development
Environment

Agile Lifecycle
Management

Continuous Integration

Code Review

Source Control

Continuous
Integration
Server

Test Automation

Presenter
Presentation Notes
Focus on CI first.
Includes a CI server and a some form of source control and versioning system.
May include a code review tool.
Hopefully includes test automation tools.
Usually works with IDEs.
IDEs influenced by Agile lifecycle management systems.
Neither one is important.

=== EXPANDED NOTES ===
Continuous integration must include a continuous integration service. This is the engine that drives the associated autonomous processes needed for the production of software.
Continuous integration will include one, maybe more, centralised or distributed source code control and versioning system.
Continuous integration may have a code review system, and test automation tools are ideal at detecting problems early.
Continuous integration are quite likely to be tied-in with integrated development environments.
Perhaps integrated at more levels than just source control.
Agile lifecycle management tools provide insights into development tasks.
Neither addition is strictly essential for continuous integration.

bunss| bunss| SISAjeuy soue1danoy

obelon0)
°p0D

nun uoneibayy| D11e1S 1asM

UonewoINy 159|

Continuous Integration

Code Review
Source Control

Continuous
Integration Server

@

FEEDBACK
FEEDBACK

Management

S
Qg
i)

3 E
-+

o O
o

C £
Q2
mE

Agile Lifecycle

Presenter
Presentation Notes
Elements of continuous integration.
Test automation: expanded into five types.
White arrows: direction and type of information.

=== EXPANDED NOTES ===
The white arrows show what type of information moves between elements and its primary direction.

———

Continuous Integration

FEEDBACK

Integrated Dev
Environment

NetBeans
= Eclipse
= Visual Studio
= Android Studio

FEEDBACK

Agile Lifecycle
Management :

= ActiveCollab REQUIRE
" Ra”y -MENTS

Code Review

Gerrit
Crucible
FishEye

Source Control
Git
Mercurial

ClearCase
Subversion

c
O
+—

O

| -

(@)

O]
-+
L

Test Automation

Integration Server

Continuous

Jenkins
Bamboo
CruiseControl
TeamCity

Jasmine
Lime
NUnit
JUnit

Cucumber
Spock
Selenium
NOAEN

Analysis

Klocwork
Jtest
Coverity
Globalyzer

Acceptance

The Grinder
LoadRunner
FitNesse
JMeter

Coverage

JCov
EMMA
Serenity
Clover

Presenter
Presentation Notes
Examples of each element in continuous integration.

=== EXPANDED NOTES ===
Here are examples of each element in continuous integration. You might recognise some of these tools.
For clarity, the test automation element has been expanded into five distinct types of software testing.
The white arrows show what type of information moves between elements and its primary direction.

Atlassian FishEye is used to visualise and report on activity and search for commits, files, revisions, or teammates across source control systems (essentially, it’s just a diff tool)
Atlassian Crucible is a code review tool for discussing changes, sharing knowledge, and identification of defects across source control systems
Atlassian Bamboo
JetBrains TeamCity
CruiseControl is an independent product
Nunit (.NET)
Parasoft Jtest
Jasmine (JavaScript)
Hewlett Packard LoadRunner
Apache JMeter

Integrated Dev
Environment

NetBeans
Eclipse

Visual Studio
Android Studio

FEEDBACK

———

Source Control

Git
Mercurial
ClearCase
Subversion

Continuous Integration

Continuous
Integration Server

= Jenkins
= Bamboo

= JeamCity

= CruiseControl

Presenter
Presentation Notes
Isolate core elements.
Cannot perform continuous integration without them.
Notice the loop.

=== EXPANDED NOTES ===
The core continuous integration elements create a loop of development and feedback.
A developer writes code, commits it to source control, which triggers the continuous integration server to do something.
Some sort of feedback is returned to the developer, either to their integrated development environment, e-mail, or a collaboration tool.

Continuous Delivery

Build

Artefact
Repository

Presenter
Presentation Notes
CD must include a build environment.
CD might utilise an artefact repository.

=== EXPANDED NOTES ===
Continuous delivery cannot exist without a build environment. A service that compiles executable code or evaluates interpreted code and scripts before generating a distributable and installable package.
Continuous delivery might make use of an artefact repository, which stores reusable compiled code units and other files to save time and improve modularity of the application.

Continuous Integration Continuous Delivery

Build

Artefact
Repository

Continuous |
Integration

Source Control

Server

Reporting

Defect
Management

Presenter
Presentation Notes
Build tools work on source code.
CI server is needed to trigger builds.
Not necessary for CD: reporting and defect management systems.
Included to show relationship.

=== EXPANDED NOTES ===
A build tool compiles source code and other resources, so it must get them from a source control system.
Notice that a continuous integration server is also needed to trigger builds and the placement of compiled code units.
Build environments often need to record the properties of compiled and distributed software.
This data can be used by a defect management system to ensure accurate information is maintained while debugging and fixing defects.

EXECUTE

Continuous
Integration Server

Source Control CODE

ESTABLISH

Reporting ~ DEFECTS Defect DEFECTS

Management

Presenter
Presentation Notes
Elements in continuous deployment.
White arrows: direction and type of information.
Output is a release with defect information coming in.

=== EXPANDED NOTES ===
The white arrows show what type of information moves between elements and its primary direction.
Distributable software may be released directly from the build tool to a place where it can be downloaded, or it can be maintained in an artefact repository for later use.

Source Control

Git
Mercurial
ClearCase
Subversion

CODE

EXECUTE

Continuous

Integration Server

Jenkins

Bamboo
CruiseControl
TeamCity

ESTABLISH

Reporting

Checkmarx
SonarQube
FindBugs

PUBLISH

Gradle
Maven
Fastlane
ANT/Make

Artefact
Repository

Pulp
NuGet
Archiva
Artifactory

DEFECTS

Defect
Management

Bugzilla
Jira
Mantis
Stryka

DEFECTS

Presenter
Presentation Notes
Examples of each element in continuous deployment.

=== EXPANDED NOTES ===
Here are examples of each element in continuous deployment. You might recognise some of these tools.

EXECUTE

Gradle
= Maven

= Fastlane
ANT/Make

Integration Server , Repository

= Jenkins = Pulp

= Bamboo = NuGet

= CruiseControl = Archiva

= TeamCity = Artifactory

Presenter
Presentation Notes
Core elements are shown.
CI server is essential: trigger builds and publication of releases.
Build server may pull pre-compiled code units into a new build.

=== EXPANDED NOTES ===
The core elements of continuous delivery are highlighted this time.
The continuous integration server is essential. It triggers the build process and the publication of the product of successful builds.

Reduce the distance between

development and localisation.

Presenter
Presentation Notes
Goals of CL: reduce distance between development and localisation while decreasing technical debt.
Too much technical debt = more complications.

=== EXPANDED NOTES ===
One of the goals of continuous localisation is to reduce the distance between software development and software localisation, while keeping technical debt as low as possible.
Introduction of new tools and processes for automation tends to increase technical debt, so this needs to be planned and managed carefully.
If technical debt increases too much, it will be difficult to control continuous localisation and introduce more complications, rather than reduce them.

Continuous Localisation

Translation

Localisation

Presenter
Presentation Notes
CL includes same elements normally used in traditional localisation.

=== EXPANDED NOTES ===
At a high level, continuous localisation includes the same elements normally used in traditional localisation.
In this instance it’s adaptation of a product’s internationalised components and translation of linguistic content.

Continuous Localisation Continuous Integration

Translation

Source Control

Localisation

' Continuous
Integration

Server

Presenter
Presentation Notes
Once again, notice the CI server and source control.

=== EXPANDED NOTES ===
- Continuous localisation wouldn’t be possible without the continuous integration server, and of course the source control system that manages the source code.

Source Control

CODE

Continuous Integration

| -
()
>
v
S5 O
OS
> C
C O
mm
| -
(@)}
Ce
+
£

INTEGRATE

TRANSLATE

ASIVDOT

Localisation

Continuous Localisation
Translation

Presenter
Presentation Notes
CI server triggers translation process.
CI server triggers subsequent localisation tools.
CI server trigger final commit and then a build.

=== EXPANDED NOTES ===
The continuous integration server, again, performs the automation, triggering translation and localisation, then it commits code before continuous delivery kicks in.

MateCat
Transplicity
Trados
Y

LOCALISE

Localisation

Okapi
Framework
Passolo
Bespoke tools

Jenkins
Bamboo
CruiseControl
TeamCity

Git
Mercurial
ClearCase
Subversion

Presenter
Presentation Notes
Sample of tools used in CL.

=== EXPANDED NOTES ===
This is a collection of tools that might be used in continuous localisation.
It’s not a definitive list and it is certainly not an endorsement of such tools.

Agile Lifecycle Defect
Management Management DEFECTS

= Rally

= Gerrit
A

Integrated Dev

Environment Reporting

= Eclipse Source Control = SonarQube

Continuous
Integration Server

= Jenkins

= MateCat T

Test Automation

Localisation

» Globalyzer Artefact Repository ~ RELEASE

= Python Tool

= Artifactory

Presenter
Presentation Notes
Most elements from CI, CD, and CL.
A sample of tools in each element.

=== EXPANDED NOTES ===
This is a big picture view of all elements that would represent a thorough continuous integration, continuous delivery, and continuous localisation environment.
It includes a sample tools that could be used in each element, and each element’s association with other elements.
Paths have been simplified to improve clarity.

Presenter
Presentation Notes
How exactly can CL be achieved?
CL must absolutely be uninterrupted.
No breaks, no manual intervention.

=== EXPANDED NOTES ===
How can continuous localisation be achieved?
It must be heavily stressed that localisation must be continuous. There can be no breaks, and there can be no manual intervention between entities.
The introduction of manual tasks will only introduce delays and inconsistent errors, and potentially increase costs.

A change of attitude.

Presenter
Presentation Notes
Cannot use traditional approach localisation.
Overcome fears.
Reluctance to change.
Project managers: loosing control.
Engineers: absence of repetition and comfort of manual tasks.
Invite non-technical: input into design, development, test – they will think of new ways.
Invite engineers: development of tools, learn new language, personal gain.

=== EXPANDED NOTES ===
The biggest barrier facing the advancement of continuous localisation is attitude. There may be people in development and localisation teams that feel their role is threatened by automation.
Project managers may fear their control over projects is obsolete. Localisation engineers may feel secure with repetitive manual tasks.
The goal is to overcome this attitude by including all stakeholders in the development of continuous localisation.
Invite non-technical roles to provide their input into the design, development, and testing of continuous localisation controls, monitoring, metrics, and reporting. They will quickly find ways of making it work for them.
Invite engineers to get involved with evolving continuous integration tools, write scripts, and test workflows. They might realise they want to learn a new scripting language – a personal and positive outcome for them.

Throw away

®
>R

B

traditional processes.

Presenter
Presentation Notes
Not all traditional processes apply in CL.
No longer: L10N at end of development/sprint/iteration.
Localise here and now – constantly.

=== EXPANDED NOTES ===
Must throw away traditional localisation practices because they will not work any more in a continuous localisation environment.
Cannot think of localisation starting at the end of product development, or the end of a sprint or iteration.
In continuous localisation, localisation must be occurring all the time there is something to localise.
Localisation cannot wait because it will be playing catch-up all the time if it does not keep up with the rate developers are producing localisable content.

Continuous localisation
cannot be achieved

without automation.

Presenter
Presentation Notes
Reiterate this point.
No automation, no CL.
No redundancy. Enhances/extends human roles.

=== EXPANDED NOTES ===
It goes without saying that continuous localisation cannot be achieved without full automation.
It cannot be continuous if it involves people between the endpoints.
Must stress that automation does not lead to redundant human roles, but rather it is an extension or enhancement of the role.

Tools and Well-defined
Services Interfaces

Automation

Maintenance and \Vlelglite]glgle
Enhancement and Reporting

Presenter
Presentation Notes
Integrated tools and services.
Well-defined interfaces for integration.
Easy to maintain.
Provides useful reports and can be monitored.

=== EXPANDED NOTES ===
Automation cannot exist without tools and services. Lots of them. Bespoke or off-the-shelf.
Automated tools and services must have well-defined interfaces that enable easy integration with other tools and services.
Automated systems must be easy to maintain and improve over time. If it is difficult to maintain it may reduce the benefit it delivers.
Automated systems often run in the background. Monitoring and reporting provides users with the reassurance that it is working as designed.

Integration between tools anc
services are the arteries of

continuous localisation.

Presenter
Presentation Notes
Integration is key.
Greater integration diversity = greater value.

=== EXPANDED NOTES ===
The ability to integrate tools and services with other tools and services is paramount.
The more diversely integrated a tools or service is, the more valuable it will be.

\Vlelalelliialle

Modular

]
I

d

[—

Microservice 2 Microservice 3

Microservice]

Presenter
Presentation Notes
Develop or utilise microservices.
Small independent stateless service.
Specific function. Reliable, resilient, easy to integrate with.
Shows: App A/B using desired microservices.

=== EXPANDED NOTES ===
Consider using microservices, or create new ones.
Microservices are small applications that are deployed independently of other services. They are usually stateless and perform a specific function.
Microservices are often accessed via the “cloud”. Essentially, it is a secure and managed service on a server elsewhere on the Internet.
Microservices are highly modular, reliable, scalable, and can be resilient to failures in a network (a feature of scalability). If they do fail, they cannot pull other services down with them.
Microservices are autonomous, often low cost, and easy to maintain. Above all else, they must have interfaces that are easy to integrate with, such as a RESTful web service.

Ic)c_a_le_éuilder

Locale Data

Translation

Presenter
Presentation Notes
Shows examples of microservices.
Translation services.
Localisation data services.
Locale validation and build tools.

=== EXPANDED NOTES ===
This view shows a few possible examples of microservices that can be deployed in a continuous localisation environment.
A variety of translation and linguistics microservices can be used. Each performing a specific role in the production of locales.
A locale data microservice might serve standards-based information about locales, such as locale codes, language names, date and time formats, etc.
There could even be a dedicated microservice for the evaluation of localised resources and compile them into a language pack.

Pseudo-localisation

Google Translate

CLDR Grade

MateCat

Presenter
Presentation Notes
Expanding on that idea a little more.
Jenkins using microservices to process resources in GitHub.

=== EXPANDED NOTES ===
This is an example of a realistic set of microservices being used by Jenkins.
Jenkins is using translation microservices perform basic functions on resources pulled from GitHub.
Jenkins is using the Common Locale Data Repository (CLDR) to extract accurate locale data to using in Gradle build instructions.
In this example, it would be necessary to create a RESTful web service for the Common Locale Data Repository and the pseudo-localisation microservice.

AWS Lambda AWS API Gateway

Respond to code events Simplity APl integrations

Functions Service Fabric

Presenter
Presentation Notes
Infrastructure for microservices is here.
Lambda and Functions – serverless – host microservices.
API Gateway and Service Fabric – easy microservice integration.

=== EXPANDED NOTES ===
AWS Labmda and Microsoft Azure Functions are serverless architectures and they allow code to be executed in response to events.
For example, an even could be a developer committing a resource file to GitHub. Then Lambda checks the resource file’s encoding.
If the encoding is not as expected, a new event is triggered, causing another Lambda function to correct the encoding. Simple
The AWS API Gateway and Azure Service Fabric make it really easy to create services that can be integrated with. With as little fuss as possible.
Amazon Web Services (AWS) and Microsoft Azure provide cloud-based architectures that make it easy for developers and localisation teams to simplify the creation and operation of microservices.

Why stop here?

Presenter
Presentation Notes
More can be achieved for continuous localisation.
With core features in place, more cleverness can be integrated.

=== EXPANDED NOTES ===
But there is so much more that can be achieved through automation in the desire for continuous localisation.
Once the core functionality is in place, it will be clear to see how much more can be built into the solution via integrations.

IFTTT

Zapier

CloudWork

¥l

Microsoft Flow

automate.io

Presenter
Presentation Notes
Collection of logic and process control services that bring Internet of Things together.
Many-to-many relationship (not 1:1 or 1:*)

=== EXPANDED NOTES ===
This is a sample of services that are used to handle the logic and procedural processes of Internet of Things devices.
IF-This-Then-That has extremely simple logic: if <something> happens then do <that>
Zapier, for example, makes it easy to integrate with RESTful web services that are opened up by hundreds of tools and services on the Internet.
Can be easily commanded to flash a light, play a recorded message, send an e-mail, update a dashboard, or trigger another service in response to an event.

Slack

J

Webex Teams

Asana

Microsoft Teams

v

Basecamp

Presenter
Presentation Notes
Collection of collaboration tools.
Share continuous localisation event:
Committed resource, i18n test result, translation update, language pack build complete, etc.
Well-written bots can provide additional support and simplify localisation further.

=== EXPANDED NOTES ===
Collaboration tools bring teams closer together.
Integrating continuous localisation into these tools helps to make sure everyone interested is aware of the state of a project.
Even if it is just a status message; a resource was committed to source control, internationalisation static analysis found an issue, translation was completed and is ready for linguistic testing – everyone is on the same page.
Integration can work the other way around. Someone in a collaboration room can type “build Romanian” into the chat window and a bot can trigger a build. The build service creates the build and sends a URL to the build back to the collaboration room.

Amazon Alexa Apple Siri

Hardware integration Software integration

Google Home Microsoft Cortana

Presenter
Presentation Notes
Voice assistants.
TTS and STT and advances in artificial intelligence.
Easier to use voice as an interface with tools and services.
“A new string was added. I have translated it for you. Would you like to hear it?”

=== EXPANDED NOTES ===
Take continuous localisation a little bit closer to the people.
Advances in artificial intelligence, text-to-speech (TTS), and speech-to-text (STT) open a whole new interface into tools and services.
The trick is finding the best places to leverage speech control and audible feedback from events.
Advancements in TTS and the availability of voice development services, like Amazon Lex (conversational interface) and Amazon Polly (deep learning with a voice), can be used to improve the time to localise speech and speech recognition.
Artificial intelligence engines like Alexa and Cortana can be extended through the introduction of new “skills”, providing almost limitless capabilities.

* Legacy
Your
takeaways

e Architecture

* Technology

Presenter
Presentation Notes
Agile localisation’s legacy.
The role of tools and services in CI, CD, and CL.
How tools and services are associated with each other.
CI servers, like Jenkins, are a core element of CI, CD, and CL.

=== EXPANDED NOTES ===
Looked at how continuous localisation was born into necessity in the wake of the failed agile localisation movement.
Looked at the design considerations for creating a continuous localisation environment that replaces manual tasks.
Looked at the tools and services that can be used to create continuous localisation.

Questions?

£
17 o m linkedin.com/in/lefman

Session Abstract

Throughout 2076, attendees of the
localisation industry’s leading conference
were talking feverishly about continuous
localisation as if it were a new fashionable
term for the localisation industry. However,
when asked how it was working out for them,
the response was frequently along the lines of
"we still have a long way to go' or the less
encouraging "we haven't even started yet".

This brief obsession with the agile software
development methodology amounted to
nothing significant, but it did fuel the desire
for faster localisation To make this possible,
there needed to be a seismic shift in the way
software is developed and released.

Continuous localisation S software
internationalisation and localisation processes
fused with a continuous integration and
deployment environment. This session is for
people in organisations that are thinking
about continuous localisation. We look at the
ingredients for blending localisation processes
with a new or existing continuous integration
environment. We also examine the tools and
interfaces that can be used to automate
continuous deployment of locales.

By the end of the session you will recognise
the key elements needed to design a
continuous localisation platform, and you will
understand the marvels of modern gadgets
and gizmos that make it much more than just
an agile talking point.

	Large Scale Continuous Localisation Design
	Slide Number 2
	False Hope and the�Need for Speed
	“A collection of autonomous parts that form an uninterrupted �process of localisation.”
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Reduce the distance between development and localisation.
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	A change of attitude.
	Slide Number 26
	Continuous localisation�cannot be achieved �without automation.
	Automation
	Integration between tools and services are the arteries of continuous localisation.
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Why stop here?
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Questions?
	Slide Number 40

